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Abstract 

A novel theory of paths, in which configurations are weighted ac- 

cording to their curvature as well aa their length, is developed. 
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Theories of manifolds M embedded in higher dimensional spaces S are a subject 

of much current interest. The guiding principle in these theories is invariance under 

arbitrary reparametrizations of the coordinates used to label M. 

Usually, a further assumption is made - that only intrinsic properties of M 

enter; then the corresponding action must be proportional to the invariant volume 

of M. It is conceivable, however, that the manner in which M is embedded in S is 

of consequence, for there are always terms which depend upon M in an extrinsic 

fashion, and yet are still general coordinate invariant. Perhaps it is worthwhile 

to consider the most general theory possible, as long as it respects other physical 

principles such as renormalizability. 

For the case in which M is a surface, such an “extrinsic” theory has been studied 

by Polyakov,’ and separately, by Helfrich, and Peliti and Leibler.’ In this letter I 

follow their lead to develop an analogous theory of paths. 

In the theory I propose, the action of a path involves both its curvature and its 

length. The coupling of the curvature term is dimensionless, so I begin by showing 

that this coupling is asymptotically free. I then assume that the dimension of S, d, 

is very large, and calculate in a large d expansion. 

This theory of paths might be relevant to polymer physics.s My interest here is 

merely field theoretic, for it is unusual to find asymptotic freedom in one dimension. 

The quantum geometry of the model is also distinctive-to calculate the small fluc- 

tuations about some background path, it is necessary to assume that the path has 

non-zero curvature along its entire length. This assumption is justified by the large 

d expansion, for the paths which dominate the functional integral at large d are 

uniformly curved. It is for this reason that I term the model one of curved paths, 

and not simply a theory of paths. I should also mention that although they are not 

apparent at first, there are close similarities between this theory and a nonlinear 

sigma model with long range interactions.’ 

Let z represent a path in d flat, Euclidean dimensions, S = Rd. The arc length 

s is defined by the relation (ds/ds)s = 1. Then any action formed from just z and 

s is automatically reparametrization invariant. I choose 

S = i/kds+mjds, 
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where k is the curvature, kZ = (d%/dsr)s. The coupling a is dimensionless, and n 

is a mass, 772 2 0. 

This action is uniquely determined by two requirements. The first is that the 

action density (over ds) be a polynomial in k or like terms. The other is that there 

be no couplings with dimensions of inverse mass, which will ensure renormalizability. 

The effects of couplings which do not appear to be renormalizable will be discussed 

later. 

The similarities between Eq. (1) and the models of Polyakov’ and Helfrich* are 

obvious. For surfaces, the term with the dimensionless coupling involves the square 

of the (mean) curvature; there is also a term for the area of the surface. 

With a given parametrization z = z(t), 

s = 1 

/ 

(&* - (2. $)2)1/2 
-z dt + m 

a 
($)@dt, 

z / 

+ = dT/dt,% = d%/dt*. S has a local gauge symmetry - it is invariant under 

t --t f(t), where f(t) is an arbitrary differentiable function of t. Notice also that 

the curvature term is invariant under scale transformations, z(t) 4 UT(~) ; since 

s + IJS, the mass term is not. For each value oft, the model has d - 1 degrees of 

freedom: z(t) contributes d, minues one for the gauge symmetry. For paths in a 

plane (d = 2) the single degree of freedom is trivial, so I presume that d >_ 3. 

Of course when o-i = 0 S is the action for a relativistic particle, so then t can 

be viewed as the time. This connection is lost when (x-i # 0, but the model is still 

perfectly sensible as a type of statistical mechanics, as long as t is treated just as a 

parameter. 

While t is not really a time, a canonical analysis is still of use. The Lagrangian 

L (S = J ldt) depends on & and 2, so two canonical momenta must be introduced? 

(3) 

pi is conjugate to 2, and & to %. The (gauge dependent) equations of motion are 

dp,/dt = 0. The Hamiltonian X is 

j/=js,.$+&.%-L; (4) 
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M vanishes identically, as a familiar consequence of general coordinate invariance. 

While in principle K is a function of %, pi, and $ir, s in this theory they are not ail 

independent variables, and must satisfy the constraints pi .% = m 
p 

z and & .& = 0. 

Initially, one might wonder whether the model has any interesting dynamics, for 

with fixed endpoints the classical path which minimizes the action of eq. (1) is just 

a straight line. 

This overlooks an essential property of the model-its gauge invariance. It is con- 

vienient to choose a gauge in which the parameter t is the arc length s. Henceforth 

I work in this arc length gauge; then ?? = 1, from which ;i. % = 0, and so on. 

In the arc length gauge, nothing depends on m, at least as far as quantities 

which are local in s are concerned. The only place in which m enters is in the total 

free energy, and there its appearance is a trivial factor of m times the total arc 

length. (This differs from the theory of surfaces,‘*’ where the surface tension does 

appear as a term in a local Lagrangian for the conformal mode). 

In the arc length gauge, the Lagrangian can be taken to be 

1 = p + &(&’ - 1). 

w = W(S) is a constraint field which enforces the gauge condition. In contrast to 

eq. (1), which has two couplings of which one has the dimensions of mass, the local 

Lagrangian of eq. (5) has only a single dimensionless coupling constant. 

Eq. (5) has the form of a nonlinear sigma model with a peculiar square root type 

of kinetic energy for a d-component sigma field z(s). In the language of the sigma 

model, straight paths correspond to an ordered state, e(s) = a constant vector. 

Thus the analysis of the large d expansion, which shows that the dominant paths 

are curved, corresponds to a disordered vacuum state for the sigma model. It is well 

known that a sigma model with the usual kinetic energy is always disordered at or 

below two dimensions$ for the square root kinetic energy of eq. (5), this happens 

in one dimension. 

To calculate the renormalization group equations to one loop order, I use a 

backgroundfieldmethod-withZ=Z,i+Z,,w = w,l+w,, 2 = ~,l+?,+~z+... lCl 

is just 2 with Z,I and w,l replacing z and w. L1i generates the equations of motion 
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for & and w,!, and is assumed to vanish. 2, is 
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r., = ;- 
( 
z,‘- &(%,, .%,)’ 

hii % 1 
1 .2 1 

+j-&w’Izp + ;w,zci . q 

(6) 

In order for 2, to be well defined, it is necessary to assume that the background 

field is everywhere curved- %zi(s) # 0 for all s. Paths which have isolated points at 

which $, = 0 appear to have infinite action, and so make no contribution to the 

functional integral. As a sigma model, the assumption that %t + 0 means that the 

theory is only sensible in a disordered phase; i.e., at or below its critical dimension 

of one. 

To one-loop order in the arc length gauge, the contribution of ghosts is indepen- 

dent of & and w,l, and so can be ignored. Integrating over wg just gives factors of 

6(& .$) in the measure of the functional integral. This &function can be rewritten 

es a term in the Lagrangian w (& * ~q)2/(2~~), in the limit [ --t 0. The remaining 

integral over Z, yields the effective action A.?, 

AS = FytrlnG-i, 

3;’ = D’k &j - $ D2 
( 1 

-~D$,&D - &jDwctD, 

D z djds. Since all I want from A,? are the counterterms to one loop order, I 

take some shortcuts in evaluating A.?. w,, is treated as a constant. Within the 

trace, which includes an integration over the momentum p, I take & = D&l - 

(PfP&, & - / p + p,l j, where pCl is the momentum of the background ~1 field. 

Expanding A.? in p,! and w,,, the only ultraviolet divergences arise from the terms 

linear in Ipcl 1 and w,~. These represent renormalizations of p z,~ and w,i, and generate 

the counter term Lagrangian Ai. The renormalized Lagrangian, .?,,, = I,, + At, 

is found to be 

L.” = i&$(1 - (d2:1)cxln*) 
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+ 2 *;,- 
1 i 

1-(-J&* , iT )I 
A = an ultraviolet cutoff. Let 2 be the wave-function renormalization constant, 

and 5, = ~/fi and W, = w,! the renormalized fields. Then i,,,, can be written as 

L = t&f + +$A (2 - 1) 

if a, = o/Z. The p-function of o is 

and the theory is asymptotically free. To leading order in CY, the renormalization of 

charge is determined entirely by that of the wave-function. 

Brkin, Zinn-Justin and Le Guillou4 have studied nonlinear sigma models with 

long range interactions, including an example with a critical dimensionality of one. 

For this model, in momentum space the propagator of the sigma field is - l/lpi. 

This is essentially how the propagator for 2 behaves at large momenta, so it is not 

surprising to find that the renormalization group equations for these two models 

agree to leading order in the coupling constant. I do not believe this identity 

persists to higher order. For the long range sigma models, wave function and 

charge renormalization are always equal. * In the present model, beyond leading 

order ghosts associated with the gauge invariance can enter in a non-trivial way 

and so violate this equality. 

At this point, it is worth mentioning what happens if the action is generalized 

to include terms whose couplings have inverse dimensions of mass. Usually, these 

terms will generate new vertices for the k’s - e.g., J k”ds for n > 2. In this case, 

renormalization will induce an infinite set of counterterms, and so these terms are 

nonrenormalizable. 

There are terms, though, which are quadratic in z in the arc length gauge: 

J k’ds = J(dZz/d2)‘ds, J(d%/ds3)‘ds and so forth.5 These terms only contribute 
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to the z propagator, and thus do not generate new terms under renormalization. 

In fact, they render the model finite. 

What, then, is the use of analyzing the action of Eq. (l)? Let me make the 

customary and reasonable assumption that any term with a coupling of inverse 

mass dimension arises solely as a result of effects at short distances. Then these 

couplings should all be proportional just to (inverse) powers of the cutoff A, and 

never to those of the mass m. This means that for momenta < A, we can take the 

action to be that of Eq. (1). 

The infrared behavior of an asymptotically-free theory such as this is bound to 

be involved. For paths in the quantum theory to be well-defined, they must be 

curved-so exactly how do paths “curl up” over large distances? To develop some 

insight, I solve the model for d -+ 00 with ad fixed. The large d expansion is based 

on the identity 

/++dXexp(-ah’-&) =Eexp(-2&), 

a, b > 0. Consequently, from a Lagrangian l’, 

p = $2 + A$ + &w (2 - 1) , 

integration over the constraint field X = X(s) g’ Ives-identically-the Lagrangian 1 of 

eq. (5). For this to be true, it is crucial that b, which is - ??, enters only in the 

exponential on the right hand side of eq. (11) and not in the prefactor. If b did 

appear in the prefactor, after introducing X(s) it would be necessary to keep track 

of curvature dependent terms in the measure of the functional integral. Such terms 

in the measure can be ignored when the total arc length is infinite, but since I shall 

also consider the case of finite total arc length, it is essential to be certain that 

nothing in the measure has been overlooked. 

In Eq. (12) z only appears quadratically, and so z can be integrated out to give 

the effective Lagrangian ,!Z.,r, 

leff(X,W) = .&X2 -&w + :tpTlnG-‘(X,w) , 

G-‘(X,w) = D2 Dz-DwD. 
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(In Eq. (13), the trace, $r, is only over the momentum p, Dz = -p’). I expand 

X(s) and W(S) about fields X, and w,: X = X, + &,,,, w = wE + We,. If X, and w, are 

to give the true ground state at large d, then the terms linear in X,, and wpU must 

vanish. This gives the equations 

1 1 ( PZ 1 
Xcd 2 - 5- 2 p*/x: + w, )I = 0, (14o) 

(146) 

where I assume that X, and w, commute with p. 

What is the solution of Eq. (14)? A first guess - X, and w, both constant - 

does not work, since then the trace in Eq. (14a) is ultraviolet divergent as - A. 

This divergence does not appear with dimensional regularization, but even so there 

is no consistent solution for real X, and w,. 

Eq. (14) does have an obvious solution, if one is willing to take a bit of a leap. 

With X, = (-DZ)1/4, X: = lpj within the trace, both equations give 

1 1 
- - tr 
ad p IPI + we 

=o. (15) 

This equation can always be solved by a constant w,; the value of the constant 

will depend on the boundary conditions applicable. 

This solution has a simple physical interpretation. From eq. (12), X’ - %*, 

so X, # 0 shows that the dominant paths at large d are curved. Indeed, since 

x - -D* is an operator, this solution for X, introduces non-local interactions into 

the theory; in some sense, this non-locality is how one part of a path “communicates” 

its curvature to another. 

As illustrated by eq. (15) with this X, the propagator for % is - l/(lpl + w,). 

Consequently, to leading order in d- i, the results for the large d expansion are-up 

to some minor differences-the same as for a one-dimensional nonlinear sigma model 

with long range interactions.4 For reasons that will be explained below, this is not 

true beyond leading order in d-l. 

It is simplest to solve Eq. (15) for infinite arc length. I define a, as the renor- 



-8- FERMILAB-Pub-86124-T 

malized coupling at a scale n, 

-=---ln 1 1 1 1 

a,d ad T (, ) P 

From Eq. (15), the value of w, for infinite st, w,“, is 

WC m=pexp -2 
(’ ) I 

0’3) 

The renormalization of charge in Eq. (16) is consistent (at large d) with that found 

perturbatively in Eq. (10). From eq. (12), 6ij G(X,, w,) is the Z propagator at large 

d. For example, 

(k(s) . k(d)) - exp(--wFls - s’/), (18) 

a.3 1s - 3’1 + a. Thus w,” acts like a dynamically generated mass scale for correla- 

tions of k(s). These results are all typical of nonlinear sigma models in their critical 

dimension.6 

Thinking of the physics of a polymer, it is natural to ask what happens when a 

strand of finite length is snipped and allowed to wiggle into thermal equilibrium. Let 

the total arc length be st, and assume that the endpoints are held fixed, p = sn/+, 

n = 1,2,3.. I use zeta-function regularization, replacing the trace in Eq. (15) by 

*l (n +;)ltr ezz i - 1L(4 + O(E), (19) 

$(z) = dlnP(z)/dz. To recover Eq. (17) for infinite So, I take s-i = ln(As,/r). 

Then Eq. (15) becomes 

1 
-+ 
a,d 

-& + :7)(y) = kin(F) . 

In Eq. (20), w, is implicitly a function of st. For large str 

WC(G) PS;;jlWC m l-Lexp( 
( w9t 

S’+---) 

(20) 

w,(+) decreases as st does. There is a critical value of st, s:, at which wC(s:) vanishes: 

s: = sexp(-7)/w?. w.(s~) is negative when s < s:, and it approaches -r/s, as 

WC(%) - - ; ( lf 
1 

W,<<l ln&/?r) +“. 1 
@lb) 
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Another quantity of physical interest for a polymer is how the free energy be- 

haves as a function of the arc length. At large d, the total free energy of eq. (1) 

is the sum of the effective action S:,, z /dsLl.,,(X,,w,) and mst. For large arc 

length, St,, should produce some constant and presumably positive mass per unit 

length, but its behavior should be much more involved as st decreases. 

I shall be interested in the terms - O(d) in Sz,,, so the contribution of ghosts, 

which is - O(d”), can be neglected. J Xads - c In/ - ~(-1) by zeta-function regu- 

larization, and since ~(-1) = -s/12, this ter: just gives a constant, independent 

of st, which can be ignored. Then 

S” r,f = -&WA + ~s,tsrlnG-‘(X,,w,). (22) 

tr ln(lpl+w,) can be found by integrating tr(lpl+w,)-‘, which was needed in Eq. (20), 

with respect to w,. The constant of integration is given by 

tr In IpI m - ln(si)c(0) c i ln(pst). 

,U is introduced into Eq. (23) as a matter of convention, to make the dimensions 

work out right. The final result is 

For large st, 

(254 

While it was not obvious from Eq. (22), Eq. (25a) shows that w,” does act 

like a positive, mass-type term for large st. As st -+ si,wC(st) + 0, and St,, + 

3d ln(&/x’/“)/4. SC;, is well-defined and differentiable about s:, so at least to 

leading order in d-i, st = s: is not a point of any phase transition. S$, remains 

real for st < s:, since CC(Z) > 0 for -1 < z < 0. For small st, 

SC effpszl~{-ln[ln(~)] +~Wst)+o(4} 
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One can also calculate for the case of endpoints which are free to move, by taking 

the allowed momenta to be p = 2nmjst, m = 0, 31, Jr2.. w,” is unchanged, but 

wc(sl) increases for decreasing st; as s( + 0, wc(st) - -r/(sf ln(nsl)). The leading 

terms in So,, are the same as in Eq. (25), although the nonleading ones differ. 

The identity between the results for the theory of paths and a one-dimensional 

sigma model with long range interactions breaks down beyond leading order in d-i. 

For the sigma model, the corrections in d-’ are given by expanding the constraint 

field w = w, + We, in small fluctuations about w,; < (wnu)’ >- O(d-I). To any finite 

order in d-‘, this expansion is infrared finite. 

For the theory of paths, there are two constraint fields about which to expand, X 

= X,+X,, and w. The fluctuations in X,, are not only unique to the theory of paths, 

but they dramatically alter the physics. From eq. (13) 1/X2 appears in G-‘(X,w), 

so expansion in X,, will inevitably produce terms - l/X: = I/]p]; no higher powers 

of l/X, seem to. These factors of l/]p] . t d m ro uce infrared divergences for finite d 

that do not occur at infinite d. For d < co, the endpoints must be held 6xed so 

that any momenta are always nonzero. Even with fixed endpoints, the corrections 

in d-i will bring in a logarithmic sensitivity to st for large st. 

I thank C. Zachos for several helpful comments and discussions; he has also 

considered related theories of paths. 
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